

Sanierungsmaßnahmen im Gebäudebestand für den Einsatz von Wärmepumpen

C.A.R.M.E.N.-Fachgespräch

09. Oktober 2018

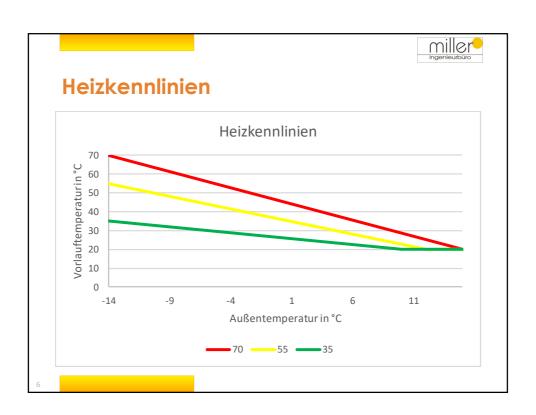
Aschaffenburg

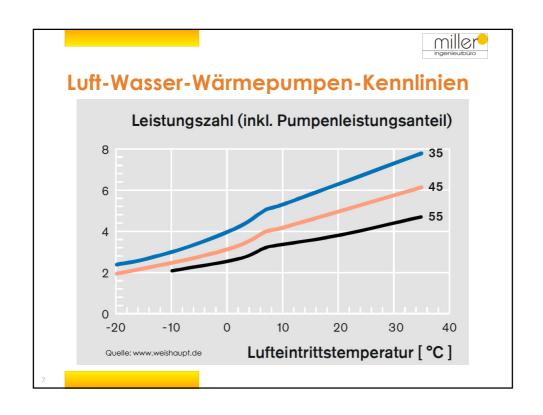
Agenda

- 1. Was im Altbau zu beachten ist...
- 2. Anlagen-Kombinationen
- 3. Polysun-Optimierung
- 4. Praxis-Werte aus einem Wohngebäude
- 5. (Praxis-Werte aus einem Nichtwohngebäude)

3

Der Gebäudebestand in D...


Beschreibung/Bauweise/Baujahr	mittlere Heizlast [W/m²]			
vor 1977	130			
WärmeschutzV 1977	70			
WärmeschutzV 1995	40			
EnEV 2002	30			
Niedrigenergiehaus	25			
Passivhaus	10			


Wichtig: Raumheizlast nach DIN EN 12831 (oder Gebäudesimulation) ermitteln und spez. Heizlast des "schlechtesten Raums" beachten! (kann doppelt bis dreifach so hoch sein wie der Mittelwert)

K(A)ltbau und Wärmepumpen

- 1. Im nicht energetisch modernisierten Altbau mit Heizkörper ist die Vorlauftemperatur bei Norm-Außentemperatur bei 70 °C und mehr...
- 2. Je höher die Vorlauftemperatur, desto geringer die Leistungszahl einer Wärmepumpe (Effizienz-Kriterium!)

Exkurs: Hydraulische Optimierung

Modernisiertes Wohngebäude mit 2 Heizkreisen (FBH + HK):

- Vorlauftemperatur FBH: 35 °C
- Vorlauftemperatur HK: 57 °C (KfW-Anforderung erfüllt!)
- → Analyse des "schlechtesten Heizkörpers" und Erhöhung dessen Wärmeübertragungsleistung
- → Reduktion der Vorlauftemperatur HK auf 47 °C!!!

Heizflächendaten

Lfd. Nr.	Raumbezeichnung	Raumheizlast [W]	Heizflächentyp	t _R [°C]	Normleistung 75/65 °C	Verhältnis Q _{HK} /Q _R	Entf. zur Pumpe
1	Bad	530	Heizkörper 1	39	1732	3,3	mittel
2	Essen	520	Heizkörper 1 Platte 22/600/1200	31	2033	3,9	nah
3	Flur EG+OG	441	Heizkörper 1 Platte 22/900/600	36	1413	3,2	mittel
4	Küche	207	Heizkörper 1 Platte 22/600/500	30	847	4,1	nah
5	Schlafen	592	Heizkörper 1 Platte 22/600/1400	31	2372	4,0	mittel
6	Bad	315	Heizkörper 1 Platte 22/500/800	39	1049	3,3	weit
7	Schlafen NO	635	Heizkörper 1 Platte 22/600/1400	32	2372	3,7	weit
8	Schlafen SW	864	Heizkörper 1 Platte 22/600/1400	40	2372	2,7	weit

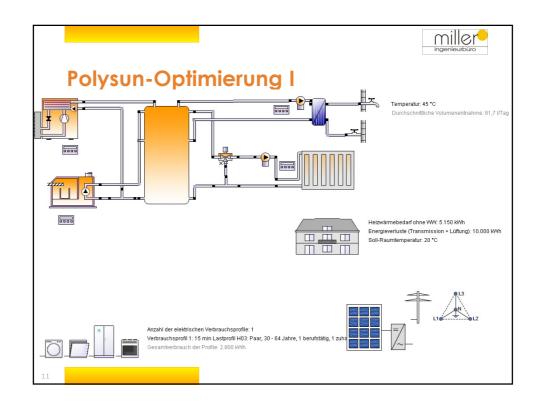
Warum Luft-Wasser-Wärmepumpen (in gut gedämmten Gebäuden)?

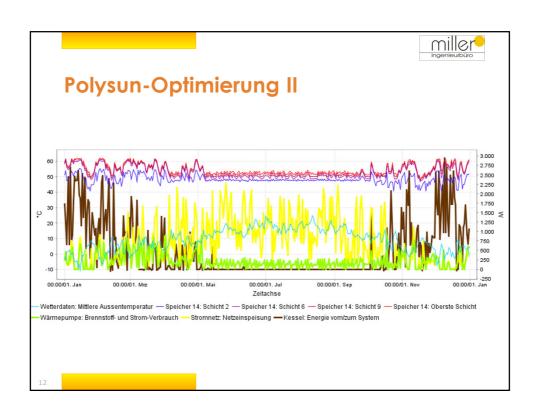
- In bivalent-teilparallelen Systemen (auch bei der Ergänzung eines bestehenden Heizungssystems) kann der Bivalenzpunkt so gewählt werden, dass der COP besser ist als bei Erdreich-Wärmepumpen
- 2. Investitionskosten deutlich geringer als bei Erdreich-Wärmepumpen (ca. 10 t€ für Wärmepumpe, Erdreich-Kollektor oder Bohrung zwischen 10...20 t€)

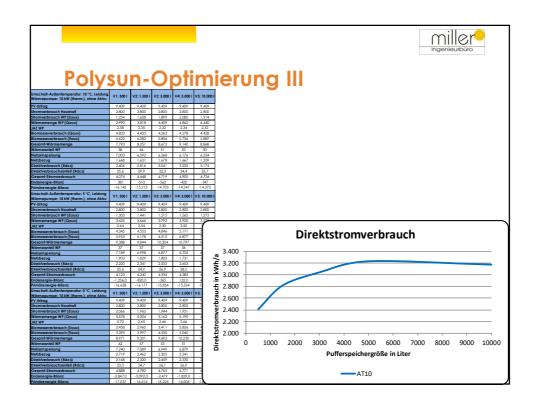
In Gebäuden mit keiner oder wenig Dämmung haben Erdreich-Wärmepumpen in der Hauptnutzungszeit (Außentemperaturen < 0 °C) einen Vorteil durch bessere Arbeitszahl, in gut gedämmten Gebäuden ist der Wärmebedarf für Warmwasser meist höher als fürs Heizen!

9

Sinnvolle Kombinationen


Die Kombination von Wärmepumpen mit anderen Technologien kann viele Vorteile bieten:


1. (Luft-Wasser-)Wärmepumpe mit Photovoltaik:


- besserer Ertrag als Solarthermie ohne Direktstrahlung
- sg-ready: Solarer Überschuss ist in Wärme günstiger zu speichern als mit Akku (Faktor 10...30!)
- → Pufferspeicherdimensionierung beachten!

2. (Luft-Wasser-)Wärmepumpe mit Scheitholz:

- (großer) Pufferspeicher für beide Systeme notwendig
- Ausfallsicherheit/Redundanz
- Investition im akzeptablen Rahmen

Polysun-Optimierung III

Folgende Annahmen gelten für eine PV-Anlage ohne Wärmepumpe mit Holzpelletofen:

✓ PV-Ertrag: 9.409 kWh/a

✓ Direktverbrauch: 1.746 kWh/a

→ Deckung des Haushaltsstromverbrauchs zu ca. 60 %!

✓ Holzpelletverbrauch: ca. 3 Tonnen

✓ Zusätzlicher Stromeinkauf: ca. 1.000 kWh/a

✓ Endenergiebilanz: ca. 8.000 kWh/a

1/1

Polysun-Optimierung III

Folgende Annahmen gelten für eine PV-Anlage mit Wärmepumpe sowie 4.000 I Pufferspeicher und Holzpelletofen:

✓ PV-Ertrag: 9.409 kWh/a

✓ Direktverbrauch: ca. 3.200 kWh/a

→ Deckung des Stromverbrauchs zu ca. 65 %!

✓ Holzpelletverbrauch: ca. 1 Tonne

✓ Zusätzlicher Stromeinkauf: ca. 1.700 kWh/a

✓ Endenergiebilanz: ca. -600 kWh/a

Praxis-Werte aus einem Wohngebäude III

Energie-Bilanz seit Sept. 2017:

✓ PV-Ertrag: ca. 8.400 kWh/a

✓ Stromeinspeisung: ca. 6.100 kWh/a

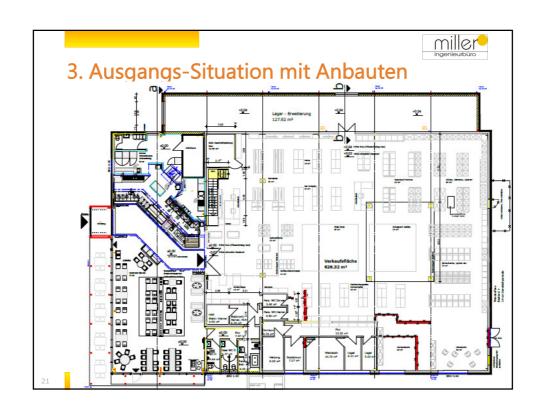
✓ Stromeinkauf: ca. 2.400 kWh/a

✓ Stromverbrauch: ca. 4.600 kWh/a

✓ Scheitholzverbrauch: ca. 4 Ster/a (weich, nass)

✓ Endenergiebilanz: ca. 0 kWh/a

Praxis-Werte aus einem Wohngebäude IV


Kostenbilanz:

✓ Verbleibender Stromeinkauf: ca. 700 €/a✓ Einnahme EEG-Vergütung: ca. 800 €/a

✓ Ausgabe Scheitholz: ca. 300 €/a

→ Einsparungen von ca. 2.500 €/a bezüglich der Ausgangs-Situation (Heizen+Warmwasser+Haushaltsstrom)!!!

Erste Kennwerte:

Stromerzeugung PV-Anlage (82 kWp): ca. 80.000 kWh/a

Wärmemengenverbrauch (inkl. Kälte): ca. 30.000 kWh/a

→ Spezifischer Verbrauch: ca. 25 kWh/(m²*a)

Stromverbrauch Wärmepumpe: ca. 10.000 kWh/a

Autarkie (ohne el. mit th. Speicher): ca. 50 %

Stromeinkauf "WP, Licht, usw.": ca. 4.000,- €/a

Stromverkauf: ca. 6.000,**-** €/a

COP von Nov. 2017 – Jan. 2018: ca. 3,5!!!

Vielen Dank an alle vor dem Bildschirm!!!

Wie wäre es mit einer Plus-Variante?

Passiv 👚 + aktiv 💥 = plus 💥

Besuchen Sie und auch unter www.miller-ib.de!